489.
社区发现是复杂网络挖掘中的重要任务之一,在恐怖组织识别、蛋白质功能预测、舆情分析等方面具有重要的理论和应用价值.但是,现有的社区质量评判指标具有数据依赖性与耦合关联性,而且基于单一评判指标优化的网络社区发现算法有很大的局限性.针对这些问题,将网络社区发现问题形式化为多目标优化问题,提出了一种基于多目标粒子群优化的网络社区发现算法MOCD-PSO,它选取模块度
Q、最小最大割MinMaxCut 与轮廓(silhouette)这3 个指标进行综合寻优.实验结果表明,MOCD-PSO 算法具有较好的收敛性,能够发现分布均匀且分散度较高的Pareto 最优网络社区结构集,并且无论与单目标优化方法(GN 与GA-Net)相比较,还是与多目标优化算法(MOGANet与SCAH-MOHSA)相比较,MOCD-PSO 算法都能在无先验信息的条件下挖掘出更高质量的网络社区.… …
相似文献