876.
目的 图像检索是计算机视觉的一项重要任务。图像检索的关键是图像的内容描述,复杂图像的内容描述很具有挑战性。传统的方法用固定长度的向量描述图像内容,为此提出一种变长序列描述模型,目的是丰富特征编码的信息表达能力,提高检索精度。
方法 本文提出序列描述模型,用可变长度特征序列描述图像。序列描述模型首先用CNN(convolutional neural network)提取底层特征,然后用中间层LSTM(long short-term memory)产生局部特征的相关性表示,最后用视觉注意LSTM(attention LSTM)产生一组向量描述一幅图像。通过匈牙利算法计算图像之间的相似性完成图像检索任务。模型采用标签级别的triplet loss函数进行端对端的训练。
结果 在MIRFLICKR-25K和NUS-WIDE数据集上进行图像检索实验,并和相关算法进行比较。相对于其他方法,本文模型检索精度提高了512个百分点。相对于定长的图像描述方式,本文模型在多标签数据集上能够显著改善检索效果。
结论 本文提出了新的图像序列描述模型,可以显著改善检索效果,适用于多标签图像的检索任务。… …
相似文献