跨域序列推荐(cross-domain sequential recommendation,CSR)旨在通过挖掘用户在多域混合序列中的行为偏好来为其提供跨域个性化推荐服务. 近年来,研究人员开始尝试将图卷积网络(graph convolution network,GCN)集成到CSR中,以建模用户和项目之间的复杂关系. 然而,基于图的CSR方法大多通过复杂的结构来捕捉用户在多个域中的序列行为模式,这导致其通常具有较高的计算复杂度和较大的内存开销,限制了模型在资源受限设备上的应用. 此外,已有的轻量级图跨域序列推荐方法认为,应该采用单层聚合协议(single layer aggregating protocol,SLAP)来学习跨域序列图(cross-domain sequential graph,CSG)上的嵌入表示. 基于这种协议的图卷积网络,能够规避多层聚合协议所带来的额外跨域噪声,但却难以捕捉域内的高阶序列依赖关系. 为了解决上述挑战,提出了一种轻量级的三分支图外部注意力网络(tri-branches graph external attention network,TEA-Net). 具体而言,TEA-Net首先将原始CSG分为域间以及域内序列图,并设计了一种并行的三分支图卷积网络结构来学习图中的节点表示. 该结构能够以较低的计算开销,在不引入额外跨域噪声的条件下,学习域间的低阶协同过滤关系和域内的高阶序列依赖关系. 其次,在三分支结构的基础上,提出了一种改良的外部注意力(external attention,EA)组件,该组件移除了EA中的非线性通道,使其能够以更低的开销挖掘项目序列依赖关系并将注意力权重在多个分支上共享. 在2个真实数据集上进行了广泛的实验来验证TEA-Net的性能表现. 与10种最先进的CSR方法相比,TEA-Net在轻量化性能和预测精度方面均取得了更好的结果.
… … 相似文献随着区块链技术应用的普及,联盟链Hyperledger Fabric(简称Fabric)已成为知名区块链开源平台,并得到广泛关注. 然而Fabric仍受困于并发事务间冲突问题,冲突发生时会引发大量无效交易上链,导致吞吐量下降,阻碍其发展. 对于该问题,现有面向块内冲突的方案缺乏高效的冲突检测和避免方法,同时现有研究往往忽略区块间冲突对吞吐量的不利影响. 提出了一种Fabric的优化方案Fabric-HT(fabric with high throughput),从区块内和区块间2方面入手,有效降低事务间并发冲突和提高系统吞吐量. 针对区块内事务冲突,提出了一种事务调度机制,根据块内冲突事务集定义了一种高效数据结构——依赖关系链,识别具有“危险结构”的事务并提前中止,合理调度事务和消除冲突;针对区块间事务冲突,将冲突事务检测提前至排序节点完成,建立以“推送-匹配”为核心的冲突事务早期避免机制. 在多场景下开展大量实验,结果表明Fabric-HT在吞吐量、事务中止率、事务平均执行时间、无效事务空间占用率等方面均优于对比方案. Fabric-HT吞吐量最高可达Fabric的9.51倍,是最新优化方案FabricSharp的1.18倍;空间利用率上相比FabricSharp提升了14%. 此外,Fabric-HT也表现出较好的鲁棒性和抗攻击能力.
… … 相似文献