•   按检索    检索词:    高级检索
     排序:相关度 OA 时间 被引次数 点击次数 下载次数 共有10000条符合的查询结果,以下是第1581-1600项 搜索用时 100 毫秒
[首页] « 上一页 [75] [76] [77] [78] [79] 80 [81] [82] [83] [84] [85] 下一页 » 末  页»
1581.
  
目的 文本对抗攻击主要分为实例型攻击和通用非实例型攻击。以通用触发器(universal trigger,UniTrigger)为代表的通用非实例型攻击对文本预测任务造成严重影响,该方法通过生成特定攻击序列使得目标模型预测精度降至接近零。为了抵御通用文本触发器攻击的侵扰,本文从图像对抗性样本检测器中得到启发,提出一种基于令牌损失权重信息的对抗性文本检测方法(loss-based detect universal adversarial attack,LBD-UAA),针对 UniTrigger攻击进行防御。方法 首先 LBD-UAA 分割目标样本为独立令牌序列,其次计算每个序列的令牌损失权重度量值(token-loss value,TLV)以此建立全样本序列查询表。最后基于 UniTrigger 攻击的扰动序列在查询表中影响值较大,将全序列查询表输入设定的差异性检测器中通过阈值阀门进行对抗性文本检测。结果 通过在 4 个数据集上进行性能检测实验,验证所提出方法的有效性。结果表明,此方法在对抗性样本识别准确率上高达 97. 17%,最高对抗样本召回率达到 100%。与其他 3 种检测方法相比,LBD-UAA 在真阳率和假阳率的最佳性能达到 99. 6% 和 6. 8%,均实现大幅度超越。同时,通过设置先验判断将短样本检测的误判率降低约 50%。结论 针对 UniTrigger 为代表的非实例通用式对抗性攻击提出 LBD-UAA 检测方法,并在多个数据集上取得最优的检测结果,为文本对抗检测提供一种更有效的参考机制。… …   相似文献
1582.
近年来, 基于卷积神经网络(Convolutional neural network, CNN) 的图像去雾方法在合成数据集上取得了显著的进展, 但由于真实场景中存在雾分布不均的问题, 卷积运算的局部感受野难以有效捕获到上下文指导信息, 从而导致全局结构信息丢失. 因此, 真实场… …   相似文献
1583.
  
城市车载自组织网络中具有拓扑变化频繁,车辆分布不均匀等特性,因此如何选择下一跳车辆和确定最优传输路径是在复杂城市环境下设计高效路由协议的两个具有挑战性的问题.针对目前车载自组网中基于地理位置的算法具有下一跳车辆选取不合理,数据的传输路径缺少整体规划等问题,提出了一种基于最大最小蚁… …   相似文献
1584.
  
在这篇文章中,针对分片区块链(Sharded Blockchain)系统性能优化问题,提出了一种结合粒子群和遗传算法的系统性能优化方法(PSO-GA),目的是为了在尽可能满足当前网络环境情况下,提升其系统吞吐量.该方法考虑分片区块链中节点的计算能力、恶意节点的概率以及节点之间的传… …   相似文献
1585.
长时目标跟踪相对于短时目标跟踪仍然是一个巨大的挑战.然而现有的长时跟踪算法通常在面对目标频繁出现消失、目标外观发生剧变等挑战中表现不佳.本文提出了一种基于局部搜索模块和全局搜索跟踪模块的全新、鲁棒且实时的长时跟踪框架.局部搜索模块利用TransT短时跟踪器生成一系列候选框,并通过… …   相似文献
1586.
在基于深度学习的单目图像深度估计方法中, 卷积神经网络在下采样过程中会出现图像深度信息丢失的情况, 导致物体边缘深度估计效果不佳. 提出一种多尺度特征融合的方法, 并采用自适应融合的策略, 根据特征数据动态调整不同尺度特征图的融合比例, 实现对多尺度特征信息的充分利用. 由于空洞空间金字塔池化(ASPP)在单目深度估计任务中, 会丢失图像中的像素点信息, 影响小物体的预测结果. 通过在对深层特征图使用ASPP时融合浅层特征图的丰富特征信息, 提高深度估计结果. 在NYU-DepthV2室内场景数据集的实验结果表明, 本文所提方法在物体边缘处有更准确的预测, 并且对小物体的预测有明显的提升, 均方根误差(RMSE)达到0.389, 准确率(δ <1.25)达到0.897, 验证了方法的有效性.… …   相似文献
1587.
基于谱聚类的无监督特征选择主要涉及相关系数矩阵和聚类指示矩阵, 在以往的研究中, 学者们主要关注于相关系数矩阵, 并为此设计了一系列约束和改进, 但仅关注相关系数矩阵并不能充分学习到数据内在结构. 考虑群组效应, 本文向聚类指示矩阵施加$F$范数, 并结合谱聚类以使相关系数矩阵学… …   相似文献
1588.
  
代码克隆检测是提高软件开发效率、软件质量和可靠性的重要手段。基于抽象语法树(abstract syntax tree,AST)的单语言克隆检测已经取得了较为显著的效果,但跨语言代码的AST节点存在同义词、近义词且手工标注数据集成本高等问题,限制了现有克隆检测方法的有效性和实用性。… …   相似文献
1589.
  
蛋白质复合物的检测有助于从分子水平上理解生命的活动过程。针对群智能算法检测蛋白质复合物时假阳/阴性率高、准确率低、种群多样性下降等问题,提出了基于强化学习的离散层级萤火虫算法检测蛋白质复合物(reinforcement learning-based discrete level … …   相似文献
1590.
  
针对当前冷启动推荐模型在处理异质信息网络时难以充分挖掘结构与语义信息,以及忽略网络中用户行为属性的问题,提出了一种基于元学习的多视图对比融合冷启动推荐算法(MVC-ML)。该算法在模型层和数据层双重作用下,有效缓解了冷启动问题。在MVC-ML算法框架中,首先通过元路径视图提取异质… …   相似文献
1591.
  
针对单一启发式算法易受自身原理导致的全局和局部搜索不平衡的问题,提出了一种基于动态双种群的黏菌和花粉混合算法HASMFP。首先,通过种群个体和当前最优个体之间的距离,将种群动态划分为黏菌子种群和花粉子种群分别进行搜索,以更有效地平衡算法的探索能力和开发能力。其次,对全局搜索融入相… …   相似文献
1592.
  
低频行为识别是揭示业务流程重要信息和优化流程模型的方法之一,现有流程发现方法忽略了数据影响链对低频行为产生的影响,导致了一些低频行为被视为噪声直接过滤掉。针对这一问题,提出了一种基于活动恢复集的有效低频行为分析方法。首先根据事件日志中的行为重要性过滤日志,并构建初始流程模型;其次… …   相似文献
1593.
1594.
1595.
1596.
1597.
1598.
纵向联邦学习(Vertical federated learning, VFL)是一种新兴的分布式机器学习技术, 在保障隐私性的前提下, 利用分散在各个机构的数据实现机器学习模型的联合训练. 纵向联邦学习被广泛应用于工业互联网、金融借贷和医疗诊断等诸多领域中, 因此保证其隐私安全… …   相似文献
1599.
基于GCN的协同过滤模型在推荐领域取得了较好的效果,但现有的图协同过滤学习方法通常不区分用户和项目的交互关系,不易挖掘用户行为的潜在意图.因此,提出了一种融合结构邻居和语义邻居的解耦图对比学习推荐模型.首先,将用户和项目嵌入投影到独立空间进行意图解耦;其次,在图传播阶段,依据用户… …   相似文献
1600.
异常检测旨在识别偏离预期行为模式的数据. 虽然半监督异常检测方法可以充分利用有限的标签数据作为先验知识来提高检测准确性,但是收集到的标记异常(即已知异常)很难覆盖所有类型的异常并且在现实场景中往往存在着一些新型的异常(即未知异常),这些异常可能与已知异常表现出不同的特性,因此难以… …   相似文献
[首页] « 上一页 [75] [76] [77] [78] [79] 80 [81] [82] [83] [84] [85] 下一页 » 末  页»