1581.
目的 文本对抗攻击主要分为实例型攻击和通用非实例型攻击。以通用触发器(universal trigger,UniTrigger)为代表的通用非实例型攻击对文本预测任务造成严重影响,该方法通过生成特定攻击序列使得目标模型预测精度降至接近零。为了抵御通用文本触发器攻击的侵扰,本文从图像对抗性样本检测器中得到启发,提出一种基于令牌损失权重信息的对抗性文本检测方法(loss-based detect universal adversarial attack,LBD-UAA),针对 UniTrigger攻击进行防御。
方法 首先 LBD-UAA 分割目标样本为独立令牌序列,其次计算每个序列的令牌损失权重度量值(token-loss value,TLV)以此建立全样本序列查询表。最后基于 UniTrigger 攻击的扰动序列在查询表中影响值较大,将全序列查询表输入设定的差异性检测器中通过阈值阀门进行对抗性文本检测。
结果 通过在 4 个数据集上进行性能检测实验,验证所提出方法的有效性。结果表明,此方法在对抗性样本识别准确率上高达 97. 17%,最高对抗样本召回率达到 100%。与其他 3 种检测方法相比,LBD-UAA 在真阳率和假阳率的最佳性能达到 99. 6% 和 6. 8%,均实现大幅度超越。同时,通过设置先验判断将短样本检测的误判率降低约 50%。
结论 针对 UniTrigger 为代表的非实例通用式对抗性攻击提出 LBD-UAA 检测方法,并在多个数据集上取得最优的检测结果,为文本对抗检测提供一种更有效的参考机制。… …
相似文献