651.
针对四足机器人在复杂环境中的高速稳定运动问题, 提出一种融合模型和学习的分层运动控制框架. 首先, 提出基于单次落足点偏差的惩罚机制, 实现对连续滑动状态的有效评估. 其次, 构建基于双曲正切函数的连续接触状态描述, 显著改善了传统离散方法中的相位切换冲击问题. 然后, 设计基于LSTM的地面特性实时估计网络, 实现质心位置的自适应调整. 最后, 提出基于执行层和决策层的分层控制框架, 提高系统的环境适应能力. 在Isaac Gym仿真环境中的实验表明, 该控制方法能够适应不同摩擦系数和运动速度条件. 特别是在极低摩擦环境($mu=0.05$)下, 自适应控制策略通过
针对四足机器人在复杂环境中的高速稳定运动问题, 提出一种融合模型和学习的分层运动控制框架. 首先, 提出基于单次落足点偏差的惩罚机制, 实现对连续滑动状态的有效评估. 其次, 构建基于双曲正切函数的连续接触状态描述, 显著改善了传统离散方法中的相位切换冲击问题. 然后, 设计基于LSTM的地面特性实时估计网络, 实现质心位置的自适应调整. 最后, 提出基于执行层和决策层的分层控制框架, 提高系统的环境适应能力. 在Isaac Gym仿真环境中的实验表明, 该控制方法能够适应不同摩擦系数和运动速度条件. 特别是在极低摩擦环境($mu=0.05$)下, 自适应控制策略通过针对四足机器人在复杂环境中的高速稳定运动问题, 提出一种融合模型和学习的分层运动控制框架. 首先, 提出基于单次落足点偏差的惩罚机制, 实现对连续滑动状态的有效评估. 其次, 构建基于双曲正切函数的连续接触状态描述, 显著改善了传统离散方法中的相位切换冲击问题. 然后, 设计基于LSTM的地面特性实时估计网络, 实现质心位置的自适应调整. 最后, 提出基于执行层和决策层的分层控制框架, 提高系统的环境适应能力. 在Isaac Gym仿真环境中的实验表明, 该控制方法能够适应不同摩擦系数和运动速度条件. 特别是在极低摩擦环境($mu=0.05$)下, 自适应控制策略通过针对四足机器人在复杂环境中的高速稳定运动问题, 提出一种融合模型和学习的分层运动控制框架. 首先, 提出基于单次落足点偏差的惩罚机制, 实现对连续滑动状态的有效评估. 其次, 构建基于双曲正切函数的连续接触状态描述, 显著改善了传统离散方法中的相位切换冲击问题. 然后, 设计基于LSTM的地面特性实时估计网络, 实现质心位置的自适应调整. 最后, 提出基于执行层和决策层的分层控制框架, 提高系统的环境适应能力. 在Isaac Gym仿真环境中的实验表明, 该控制方法能够适应不同摩擦系数和运动速度条件. 特别是在极低摩擦环境($mu=0.05$)下, 自适应控制策略通过针对四足机器人在复杂环境中的高速稳定运动问题,提出一种融合模型和学习的分层运动控制框架.首先,提出基于单次落足点偏差的惩罚机制,实现对连续滑动状态的有效评估.其次,构建基于双曲正切函数的连续接触状态描述,显著改善了传统离散方法中的相位切换冲击问题.然后,设计基于LSTM的地面特性实时估计网络,实现质心位置的自适应调整.最后,提出基于执行层和决策层的分层控制框架,提高系统的环境适应能力.在Isaac Gym仿真环境中的实验表明,该控制方法能够适应不同摩擦系数和运动速度条件.特别是在极低摩擦环境(μ=0.05)下,自适应控制策略通过0.061 0 m的质心高度调整,在维持1.428 4 m/s运动速度的同时,将足端滑动距离控制在0.308±0.005 0 cm,充分验证了所提控制方法的有效性和实用价值.… … 相似文献