•   按检索    检索词:    高级检索
     排序:相关度 OA 时间 被引次数 点击次数 下载次数 共有10000条符合的查询结果,以下是第9941-9960项 搜索用时 183 毫秒
[首页] « 上一页 [490] [491] [492] [493] [494] [495] [496] [497] 498 [499] [500] 下一页 » 末  页»
9941.
八阵图(ESF)是基于LBlock改进的轻量级分组密码,具有优良的软硬件实现效率。针对ESF算法的安全性,该文借助自动化搜索工具,利用不可能差分分析方法,对算法进行安全性评估。首先结合ESF的结构特性和$ S $盒的差分传播特性,建立了基于混合整数线性规划(MILP)的不可能差分… …   相似文献
9942.
彩色图像灰度化是一种被广泛应用于各个领域的图像压缩方式,但很少有研究关注彩色图像与灰度图像之间的相互转换技术。该文运用深度学习,创新性地提出了一种基于辅助变量增强的可逆彩色图像灰度化方法。该方法使用变量增强技术来保证输出与输入变量通道数相同以满足网络的可逆特性。具体来说,该方法通… …   相似文献
9943.
9944.
受复杂系统布线空间的制约,线缆通常为线束结构,并呈现弯折和空间立体分布形态。目前,针对立体弯折线缆线束(BSCs)的电磁耦合,仍缺乏高效的时域建模分析方法。因此,该文基于时域有限差分(FDTD)方法和传输线(TL)方程,提出自适应线缆网格技术,结合高效插值技术和电荷守恒定律,研究… …   相似文献
9945.
针对毫米波多输入输出系统(MIMO)中的身份欺骗攻击问题,该文提出一种基于信道指纹的攻击检测方案。在波束域中,毫米波信道图样呈现波束的稀疏性和高方向特性,且这种波束域特性与终端位置有极高的相关性。该文将该波束域信道图样作为一种信道指纹,提出了一种基于信道指纹的身份欺骗攻击检测方案… …   相似文献
9946.
脉冲神经网络(SNN)是一种模拟大脑神经元动力学的低功耗神经网络,为高计算效率、低能源消耗环境部署目标检测任务提供了可行的解决方案。由于脉冲的不可微性质导致SNN训练困难,一种有效的解决方法是将预训练的人工神经网络(ANN)转换为SNN来提高推理能力。然而,转换后的SNN 经常遇… …   相似文献
刘伟  李文娟  高晋  李椋 《电子与信息学报》2023,45(12):4469-4476
9947.
提升纯电动汽车整车能效、降低百公里耗电量, 是我国新能源汽车产业发展的重大需求. 智能网联背景下, V2X (Vehicle to everything)网联信息以及激光雷达、毫米波雷达、摄像头、定位及导航装置等各类车载传感器, 为智能网联电动汽车(Connected autom… …   相似文献
9948.
绘画是重要的文化艺术形式,数千年以来,我国古代产生了大量的绘画作品,包含有丰富的文化、艺术、科学与历史价值,但是由于自然灾害(地震)与自然风化以及人类越来越多的经济活动等种种原因导致部分绘画作品存在或多或少的残损或者大块缺失,严重影响了基于这些绘画作品的鉴赏、文化创意、文化传播等… …   相似文献
9949.
点对学习(pairwise learning)是指损失函数依赖于2个实例的学习任务. 遗憾界对点对学习的泛化分析尤为重要. 现有的在线点对学习分析只提供了凸损失函数下的遗憾界. 为了弥补非凸损失函数下在线点对学习理论研究的空白,提出了基于稳定性分析的非凸损失函数在线点对学习的遗憾… …   相似文献
9950.
目的 视频动作质量评估旨在评估视频中特定动作的执行情况和完成质量。自动化的动作质量评估能够有效地减少人力资源的损耗,可以更加精准、公正地对视频内容进行评估。传统动作质量评估方法主要存在以下问题: 1)视频中动作主体的多尺度时空特征问题; 2)认知差异导致的标记内在模糊性问题; 3)多头自注意力机制的注意力头冗余问题。针对以上问题,提出了一种能够感知视频序列中不同时空位置、生成细粒度标记的动作质量评估模型SALDL (self-attention and label distribution learning)。方法 SALDL提出Attention-Inc (attention-inception)结构,该结构通过Embedding、多头自注意力以及多层感知机将自注意力机制渐进式融入Inception结构,使模型能够获得不同尺度卷积特征之间的上下文信息。提出一种正负时间注意力模块PNTA (pos-neg temporal attention),通过PNTA损失挖掘时间注意力特征,从而减少自注意力头冗余并提取不同片段的注意力特征。SALDL模型通过标记增强及标记分布学习生成细粒度的动作质量标记。结果 提出的SALDL模型在MTL-AQA (multitask learning-action quality assessment)和JIGSAWS (JHU-ISI gesture and skill assessment working set)等数据集上进行了大量对比及消融实验,斯皮尔曼等级相关系数分别为0.941 6和0.818 3。结论 SALDL模型通过充分挖掘不同尺度的时空特征解决了多尺度时空特征问题,并引入符合标记分布的先验知识进行标记增强,达到了解决标记的内在模糊性问题以及注意力头的冗余问题。… …   相似文献
9951.
目的 现有图像级标注的弱监督分割方法大多利用卷积神经网络获取伪标签,其覆盖的目标区域往往过小。基于Transformer的方法通常采用自注意力对类激活图进行扩张,然而受其深层注意力不准确性的影响,优化之后得到的伪标签中背景噪声比较多。为了利用该两类特征提取网络的优点,同时结合Transformer不同层级的注意力特性,构建了一种结合卷积特征和Transformer特征的自注意力融合调制网络进行弱监督语义分割。方法 采用卷积增强的Transformer (Conformer)作为特征提取网络,其能够对图像进行更加全面的编码,得到初始的类激活图。设计了一种自注意力层级自适应融合模块,根据自注意力值和层级重要性生成融合权重,融合之后的自注意力能够较好地抑制背景噪声。提出了一种自注意力调制模块,利用像素对之间的注意力关系,设计调制函数,增大前景像素的激活响应。使用调制后的注意力对初始类激活图进行优化,使其覆盖较多的目标区域,同时有效抑制背景噪声。结果 在最常用的PASCAL VOC 2012(pattern analysis,statistical modeling and computational learning visual object classes 2012)数据集和COCO 2014 (common objectes in context 2014)数据集上利用获得的伪标签进行分割网络的训练,在对比实验中本文算法均取得最优结果,在PASCAL VOC验证集上,平均交并比(mean intersection over union,mIoU)达到了70.2%,测试集上mIoU值为70.5%,相比对比算法中最优的Transformer模型,其性能在验证集和测试集上均提升了0.9%,相比于卷积神经网络最优方法,验证集上mIoU提升了0.7%,测试集上mIoU值提升了0.8%。在COCO 2014验证集上结果为40.1%,与对比算法中最优方法相比分割精度提高了0.5%。结论 本文提出的弱监督语义分割模型,结合了卷积神经网络和Transformer的优点,通过对Transformer自注意力进行自适应融合调制,得到了图像级标签下目前最优的语义分割结果,该方法可应用于三维重建、机器人场景理解等应用领域。此外,所构建的自注意力自适应融合模块和自注意力调制模块均可嵌入到Transformer结构中,为具体视觉任务获取更鲁棒、更具鉴别性的特征。… …   相似文献
9952.
深度学习在众多领域取得了巨大成功。然而,其强大的数据拟合能力隐藏着不可解释的“捷径学习”现象,从而引发深度模型脆弱、易受攻击的安全隐患。众多研究表明,攻击者向正常数据中添加人类无法察觉的微小扰动,便可能造成模型产生灾难性的错误输出,这严重限制了深度学习在安全敏感领域的应用。对此,… …   相似文献
9953.
目的 将高光谱图像和多光谱图像进行融合,可以获得具有高空间分辨率和高光谱分辨率的光谱图像,提升光谱图像的质量。现有的基于深度学习的融合方法虽然表现良好,但缺乏对多源图像特征中光谱和空间长距离依赖关系的联合探索。为有效利用图像的光谱相关性和空间相似性,提出一种联合自注意力的Transformer网络来实现多光谱和高光谱图像融合超分辨。方法 首先利用联合自注意力模块,通过光谱注意力机制提取高光谱图像的光谱相关性特征,通过空间注意力机制提取多光谱图像的空间相似性特征,将获得的联合相似性特征用于指导高光谱图像和多光谱图像的融合;随后,将得到的融合特征输入到基于滑动窗口的残差Transformer深度网络中,探索融合特征的长距离依赖信息,学习深度先验融合知识;最后,特征通过卷积层映射为高空间分辨率的高光谱图像。结果 在CAVE和Harvard光谱数据集上分别进行了不同采样倍率下的实验,实验结果表明,与对比方法相比,本文方法从定量指标和视觉效果上,都取得了更好的效果。本文方法相较于性能第二的方法EDBIN (enhanced deep blind iterative network),在CAVE数据集上峰值信噪比提高了0.5 dB,在Harvard数据集上峰值信噪比提高了0.6 dB。结论 本文方法能够更好地融合光谱信息和空间信息,显著提升高光谱融合超分图像的质量。… …   相似文献
9954.
目的 方面级多模态情感分析日益受到关注,其目的是预测多模态数据中所提及的特定方面的情感极性。然而目前的相关方法大都对方面词在上下文建模、模态间细粒度对齐的指向性作用考虑不够,限制了方面级多模态情感分析的性能。为了解决上述问题,提出一个方面级多模态协同注意图卷积情感分析模型(aspect-level multimodal co-attention graph convolutional sentiment analysis model,AMCGC)来同时建模方面指向的模态内上下文语义关联和跨模态的细粒度对齐,以提升情感分析性能。方法 AMCGC为了获得方面导向的模态内的局部语义相关性,利用正交约束的自注意力机制生成各个模态的语义图。然后,通过图卷积获得含有方面词的文本语义图表示和融入方面词的视觉语义图表示,并设计两个不同方向的门控局部跨模态交互机制递进地实现文本语义图表示和视觉语义图表示的细粒度跨模态关联互对齐,从而降低模态间的异构鸿沟。最后,设计方面掩码来选用各模态图表示中方面节点特征作为情感表征,并引入跨模态损失降低异质方面特征的差异。结果 在两个多模态数据集上与9种方法进行对比,在Twitter-2015数据集中,相比于性能第2的模型,准确率提高了1.76%;在Twitter-2017数据集中,相比于性能第2的模型,准确率提高了1.19%。在消融实验部分则从正交约束、跨模态损失、交叉协同多模态融合分别进行评估,验证了AMCGC模型各部分的合理性。结论 本文提出的AMCGC模型能更好地捕捉模态内的局部语义相关性和模态之间的细粒度对齐,提升方面级多模态情感分析的准确性。… …   相似文献
9955.
基于骨骼信息的人体行为识别旨在从输入的包含一个或多个行为的骨骼序列中,正确地分析出行为的种类,是计算机视觉领域的研究热点之一。与基于图像的人体行为识别方法相比,基于骨骼信息的人体行为识别方法不受背景、人体外观等干扰因素的影响,具有更高的准确性、鲁棒性和计算效率。针对基于骨骼信息的… …   相似文献
9956.
目的 基于深度卷积神经网络的目标检测模型易受复杂环境(遮挡、光照、远距离、小目标等)影响导致漏检、误检和目标轮廓特征模糊的问题,现有模型难以直接泛化到航拍场景下的小目标检测任务。为有效解决上述问题,提出一种融合非临近跳连与多尺度残差结构的小目标车辆检测算法(non-adjacent hop network you only look once version 5s multi-scale residual edge contour feature extraction strategy,NHN-YOLOv5s-MREFE)。方法 首先,设计4种不同尺度的检测层,根据自身感受野大小,针对性地负责不同尺寸车辆的检测。其次,借鉴DenseNet密集跳连的思想,构建一种非临近跳连特征金字塔结构(non-adjacent hop network,NHN),通过跳连相加策略,在强化非临近层次信息交互的同时融合更多未被影响的原始信息,解决位置信息在传递过程中被逐渐稀释的问题,有效降低了模型的误检率。然后,以减少特征丢失为前提,引入反卷积和并行策略,通过参数学习实现像素填充和突破每1维度信息量的方式扩充小目标细节信息。接着,设计一种多尺度残差边缘轮廓特征提取策略(multi-scale residual edge contour feature extraction strategy,MREFE),遵循特征逐渐细化的原则,构建多尺度残差结构,采用双分支并行的方法捕获不同层级的多尺度信息,通过多尺度下的高语义信息与初始浅层信息的逐像素作差实现图像边缘特征提取,进而辅助网络模型完成目标分类。最后,采用K-Means++算法使聚类中心分散化,促使结果达到全局最优,加速模型收敛。结果 实验结果表明,非临近跳连的特征金字塔与多尺度残差结构的多模态融合策略,在提升模型运行效率,降低模型计算资源消耗的同时,有效提升了小目标检测的准确性和鲁棒性。通过多场景、多时段、多角度的样本数据增强,强化了模型在不同场景下的泛化能力。最后,在十字路口、沿途车道双场景下包含多种车辆类型的航拍图像数据集上,对比分析4种主流的目标检测方法,本文算法的综合性能最优。相较于基准模型(YOLOv5s),精确率、召回率和平均精度均值分别提升了13.7%、1.6%和8.1%。结论 本文算法可以较好地平衡检测速度与精度,以增加极小的参数量为代价,显著地提升了检测精度,并能够自适应复杂的交通环境,满足航拍场景下小目标车辆检测的实时性需求,在交通流量、密度等参数的测量和统计,车辆定位与跟踪等场景下有较高的应用价值。… …   相似文献
9957.
目的 针对现有视频目标分割(video object segmentation,VOS)算法不能自适应进行样本权重更新,以及使用过多的冗余特征信息导致不必要的空间与时间消耗等问题,提出一种自适应权重更新的轻量级视频目标分割算法。方法 首先,为建立一个具有较强目标判别性的算法模型,所提算法根据提取特征的表征质量,自适应地赋予特征相应的权重;其次,为了去除冗余信息,提高算法的运行速度,通过优化信息存储策略,构建了一个轻量级的记忆模块。结果 实验结果表明,在公开数据集DAVIS2016 (densely annotated video segmentation)和DAVIS2017上,本文算法的区域相似度与轮廓准确度的均值J&F分别达到了85.8%和78.3%,与对比的视频目标分割算法相比具有明显的优势。结论 通过合理且无冗余的历史帧信息利用方式,提升了算法对于目标建模的泛化能力,使目标掩码质量更高。… …   相似文献
9958.
在边缘计算场景中,通过将部分待执行任务卸载到边缘服务器执行能够达到降低移动设备的负载、提升移动应用性能和减少设备开销的目的.对于时延敏感任务,只有在截止期限内完成才具有实际意义.但是边缘服务器的资源往往有限,当同时接收来自多个设备的数据传输及处理任务时,可能造成任务长时间的排队等… …   相似文献
9959.
伴随着云计算的发展,以及软件即服务(SaaS)、方法即服务(FaaS)等服务框架的提出,数据中心作为服务的提供商,面临着持续性的资源管理挑战:一方面需要保证服务质量(quality of service, QoS),另一方面又需要控制资源成本.为了在提升资源使用率的同时确保负载压… …   相似文献
温盈盈  程冠杰  邓水光  尹建伟 《软件学报》2023,34(12):5887-5904
9960.
随着深度学习技术的快速发展和深入应用,深度学习训练规模持续增大,内存不足已成为影响深度学习可用性的主要瓶颈之一.内存交换机制是应对深度学习训练内存问题的关键技术,该机制利用深度学习训练内存需求的“时变”特征,在专用计算加速设备内存与外部存储之间按需移动数据,通过瞬时内存需求替代累… …   相似文献
高赫然  吴恒  许源佳  李修和  王焘  张文博 《软件学报》2023,34(12):5862-5886
[首页] « 上一页 [490] [491] [492] [493] [494] [495] [496] [497] 498 [499] [500] 下一页 » 末  页»